:py:mod:`viam.services.slam` ============================ .. py:module:: viam.services.slam Submodules ---------- .. toctree:: :titlesonly: :maxdepth: 1 client/index.rst service/index.rst slam/index.rst Package Contents ---------------- Classes ~~~~~~~ .. autoapisummary:: viam.services.slam.Pose viam.services.slam.MappingMode viam.services.slam.SensorInfo viam.services.slam.SLAM .. py:class:: Pose(*, x: float = ..., y: float = ..., z: float = ..., o_x: float = ..., o_y: float = ..., o_z: float = ..., theta: float = ...) Bases: :py:obj:`google.protobuf.message.Message` Pose is a combination of location and orientation. Location is expressed as distance which is represented by x , y, z coordinates. Orientation is expressed as an orientation vector which is represented by o_x, o_y, o_z and theta. The o_x, o_y, o_z coordinates represent the point on the cartesian unit sphere that the end of the arm is pointing to (with the origin as reference). That unit vector forms an axis around which theta rotates. This means that incrementing / decrementing theta will perform an inline rotation of the end effector. Theta is defined as rotation between two planes: the first being defined by the origin, the point (0,0,1), and the rx, ry, rz point, and the second being defined by the origin, the rx, ry, rz point and the local Z axis. Therefore, if theta is kept at zero as the north/south pole is circled, the Roll will correct itself to remain in-line. .. py:attribute:: x :type: float millimeters from the origin .. py:attribute:: y :type: float millimeters from the origin .. py:attribute:: z :type: float millimeters from the origin .. py:attribute:: o_x :type: float z component of a vector defining axis of rotation .. py:attribute:: o_y :type: float x component of a vector defining axis of rotation .. py:attribute:: o_z :type: float y component of a vector defining axis of rotation .. py:attribute:: theta :type: float degrees .. py:class:: MappingMode Bases: :py:obj:`_MappingMode` MappingMode represnts the various form of mapping and localizing SLAM can perform. These include, creating a new map, localizing on an existiing map and updating an exisiting map. .. py:class:: SensorInfo(*, name: str = ..., type: global___SensorType = ...) Bases: :py:obj:`google.protobuf.message.Message` Abstract base class for protocol messages. Protocol message classes are almost always generated by the protocol compiler. These generated types subclass Message and implement the methods shown below. .. py:attribute:: name :type: str .. py:attribute:: type :type: global___SensorType .. py:class:: SLAM(name: str) Bases: :py:obj:`viam.services.service_base.ServiceBase` SLAM represents a SLAM service. This acts as an abstract base class for any drivers representing specific arm implementations. This cannot be used on its own. If the ``__init__()`` function is overridden, it must call the ``super().__init__()`` function. .. py:attribute:: SUBTYPE :type: Final .. py:attribute:: Properties :type: TypeAlias .. py:method:: get_internal_state(*, timeout: Optional[float]) -> List[bytes] :abstractmethod: :async: Get the internal state of the SLAM algorithm required to continue mapping/localization. :: slam = SLAMClient.from_robot(robot=robot, name="my_slam_service") # Get the internal state of the SLAM algorithm required to continue mapping/localization. internal_state = await slam.get_internal_state() :returns: Chunks of the internal state of the SLAM algorithm :rtype: List[GetInternalStateResponse] .. py:method:: get_point_cloud_map(return_edited_map: bool = False, *, timeout: Optional[float]) -> List[bytes] :abstractmethod: :async: Get the point cloud map. :: slam_svc = SLAMClient.from_robot(robot=robot, name="my_slam_service") # Get the point cloud map in standard PCD format. pcd_map = await slam_svc.get_point_cloud_map() :param return_edited_map: signal to the SLAM service to return an edited map, if the map package contains one and if the SLAM service supports the feature :type return_edited_map: bool :returns: Complete pointcloud in standard PCD format. Chunks of the PointCloud, concatenating all GetPointCloudMapResponse.point_cloud_pcd_chunk values. :rtype: List[GetPointCloudMapResponse] .. py:method:: get_position(*, timeout: Optional[float]) -> viam.services.slam.Pose :abstractmethod: :async: Get current position of the specified component in the SLAM Map. :: slam_svc = SLAMClient.from_robot(robot=robot, name="my_slam_service") # Get the current position of the specified source component in the SLAM map as a Pose. pose = await slam.get_position() :returns: The current position of the specified component :rtype: Pose .. py:method:: get_properties(*, timeout: Optional[float]) -> Properties :abstractmethod: :async: Get information regarding the current SLAM session. :: slam_svc = SLAMClient.from_robot(robot=robot, name="my_slam_service") # Get the properties of your current SLAM session. slam_properties = await slam_svc.get_properties() :returns: The properties of SLAM :rtype: Properties .. py:method:: from_robot(robot: viam.robot.client.RobotClient, name: str) -> typing_extensions.Self :classmethod: Get the service named ``name`` from the provided robot. :: async def connect() -> ViamClient: # Replace "" (including brackets) with your API key and "" with your API key ID dial_options = DialOptions.with_api_key("", "") return await ViamClient.create_from_dial_options(dial_options) async def main(): robot = await connect() # Can be used with any resource, using the motion service as an example motion = MotionClient.from_robot(robot=robot, name="builtin") robot.close() :param robot: The robot :type robot: RobotClient :param name: The name of the service :type name: str :returns: The service, if it exists on the robot :rtype: Self .. py:method:: do_command(command: Mapping[str, viam.utils.ValueTypes], *, timeout: Optional[float] = None, **kwargs) -> Mapping[str, viam.utils.ValueTypes] :abstractmethod: :async: Send/receive arbitrary commands. :: motion = MotionClient.from_robot(robot, "builtin") my_command = { "cmnd": "dosomething", "someparameter": 52 } # Can be used with any resource, using the motion service as an example await motion.do_command(command=my_command) :param command: The command to execute :type command: Dict[str, ValueTypes] :returns: Result of the executed command :rtype: Dict[str, ValueTypes] .. py:method:: get_resource_name(name: str) -> viam.proto.common.ResourceName :classmethod: Get the ResourceName for this Resource with the given name :: # Can be used with any resource, using an arm as an example my_arm_name = my_arm.get_resource_name("my_arm") :param name: The name of the Resource :type name: str :returns: The ResourceName of this Resource :rtype: ResourceName .. py:method:: get_operation(kwargs: Mapping[str, Any]) -> viam.operations.Operation Get the ``Operation`` associated with the currently running function. When writing custom resources, you should get the ``Operation`` by calling this function and check to see if it's cancelled. If the ``Operation`` is cancelled, then you can perform any necessary (terminating long running tasks, cleaning up connections, etc. ). :param kwargs: The kwargs object containing the operation :type kwargs: Mapping[str, Any] :returns: The operation associated with this function :rtype: viam.operations.Operation .. py:method:: close() :async: Safely shut down the resource and prevent further use. Close must be idempotent. Later configuration may allow a resource to be "open" again. If a resource does not want or need a close function, it is assumed that the resource does not need to return errors when future non-Close methods are called. :: await component.close()