viam.proto.app.mltraining
@generated by Viam. Do not edit manually!
Classes
Helper class that provides a standard way to create an ABC using |
|
Helper class that provides a standard way to create an ABC using |
|
Abstract base class for protocol messages. |
|
Abstract base class for protocol messages. |
|
Abstract base class for protocol messages. |
|
Abstract base class for protocol messages. |
|
Abstract base class for protocol messages. |
|
Abstract base class for protocol messages. |
|
Abstract base class for protocol messages. |
|
Abstract base class for protocol messages. |
|
Abstract base class for protocol messages. |
|
Abstract base class for protocol messages. |
|
Abstract base class for protocol messages. |
|
Abstract base class for protocol messages. |
|
Abstract base class for protocol messages. |
|
Abstract base class for protocol messages. |
|
Abstract base class for protocol messages. |
|
Abstract base class for protocol messages. |
|
Package Contents
- class viam.proto.app.mltraining.MLTrainingServiceBase[source]
Bases:
abc.ABC
Helper class that provides a standard way to create an ABC using inheritance.
- abstract SubmitTrainingJob(stream: grpclib.server.Stream[app.mltraining.v1.ml_training_pb2.SubmitTrainingJobRequest, app.mltraining.v1.ml_training_pb2.SubmitTrainingJobResponse]) None [source]
- Async:
- abstract SubmitCustomTrainingJob(stream: grpclib.server.Stream[app.mltraining.v1.ml_training_pb2.SubmitCustomTrainingJobRequest, app.mltraining.v1.ml_training_pb2.SubmitCustomTrainingJobResponse]) None [source]
- Async:
- abstract GetTrainingJob(stream: grpclib.server.Stream[app.mltraining.v1.ml_training_pb2.GetTrainingJobRequest, app.mltraining.v1.ml_training_pb2.GetTrainingJobResponse]) None [source]
- Async:
- abstract ListTrainingJobs(stream: grpclib.server.Stream[app.mltraining.v1.ml_training_pb2.ListTrainingJobsRequest, app.mltraining.v1.ml_training_pb2.ListTrainingJobsResponse]) None [source]
- Async:
- abstract CancelTrainingJob(stream: grpclib.server.Stream[app.mltraining.v1.ml_training_pb2.CancelTrainingJobRequest, app.mltraining.v1.ml_training_pb2.CancelTrainingJobResponse]) None [source]
- Async:
- abstract DeleteCompletedTrainingJob(stream: grpclib.server.Stream[app.mltraining.v1.ml_training_pb2.DeleteCompletedTrainingJobRequest, app.mltraining.v1.ml_training_pb2.DeleteCompletedTrainingJobResponse]) None [source]
- Async:
- abstract GetTrainingJobLogs(stream: grpclib.server.Stream[app.mltraining.v1.ml_training_pb2.GetTrainingJobLogsRequest, app.mltraining.v1.ml_training_pb2.GetTrainingJobLogsResponse]) None [source]
- Async:
- class viam.proto.app.mltraining.MLTrainingServiceStub(channel: grpclib.client.Channel)[source]
- SubmitTrainingJob
- SubmitCustomTrainingJob
- GetTrainingJob
- ListTrainingJobs
- CancelTrainingJob
- DeleteCompletedTrainingJob
- GetTrainingJobLogs
- class viam.proto.app.mltraining.UnimplementedMLTrainingServiceBase[source]
Bases:
MLTrainingServiceBase
Helper class that provides a standard way to create an ABC using inheritance.
- async SubmitTrainingJob(stream: grpclib.server.Stream[app.mltraining.v1.ml_training_pb2.SubmitTrainingJobRequest, app.mltraining.v1.ml_training_pb2.SubmitTrainingJobResponse]) None [source]
- async SubmitCustomTrainingJob(stream: grpclib.server.Stream[app.mltraining.v1.ml_training_pb2.SubmitCustomTrainingJobRequest, app.mltraining.v1.ml_training_pb2.SubmitCustomTrainingJobResponse]) None [source]
- async GetTrainingJob(stream: grpclib.server.Stream[app.mltraining.v1.ml_training_pb2.GetTrainingJobRequest, app.mltraining.v1.ml_training_pb2.GetTrainingJobResponse]) None [source]
- async ListTrainingJobs(stream: grpclib.server.Stream[app.mltraining.v1.ml_training_pb2.ListTrainingJobsRequest, app.mltraining.v1.ml_training_pb2.ListTrainingJobsResponse]) None [source]
- async CancelTrainingJob(stream: grpclib.server.Stream[app.mltraining.v1.ml_training_pb2.CancelTrainingJobRequest, app.mltraining.v1.ml_training_pb2.CancelTrainingJobResponse]) None [source]
- async DeleteCompletedTrainingJob(stream: grpclib.server.Stream[app.mltraining.v1.ml_training_pb2.DeleteCompletedTrainingJobRequest, app.mltraining.v1.ml_training_pb2.DeleteCompletedTrainingJobResponse]) None [source]
- async GetTrainingJobLogs(stream: grpclib.server.Stream[app.mltraining.v1.ml_training_pb2.GetTrainingJobLogsRequest, app.mltraining.v1.ml_training_pb2.GetTrainingJobLogsResponse]) None [source]
- class viam.proto.app.mltraining.CancelTrainingJobRequest(*, id: str = ...)
Bases:
google.protobuf.message.Message
Abstract base class for protocol messages.
Protocol message classes are almost always generated by the protocol compiler. These generated types subclass Message and implement the methods shown below.
- id: str
- class viam.proto.app.mltraining.CancelTrainingJobResponse
Bases:
google.protobuf.message.Message
Abstract base class for protocol messages.
Protocol message classes are almost always generated by the protocol compiler. These generated types subclass Message and implement the methods shown below.
- class viam.proto.app.mltraining.DeleteCompletedTrainingJobRequest(*, id: str = ...)
Bases:
google.protobuf.message.Message
Abstract base class for protocol messages.
Protocol message classes are almost always generated by the protocol compiler. These generated types subclass Message and implement the methods shown below.
- id: str
- class viam.proto.app.mltraining.DeleteCompletedTrainingJobResponse
Bases:
google.protobuf.message.Message
Abstract base class for protocol messages.
Protocol message classes are almost always generated by the protocol compiler. These generated types subclass Message and implement the methods shown below.
- class viam.proto.app.mltraining.GetTrainingJobLogsRequest(*, id: str = ..., page_token: str | None = ...)
Bases:
google.protobuf.message.Message
Abstract base class for protocol messages.
Protocol message classes are almost always generated by the protocol compiler. These generated types subclass Message and implement the methods shown below.
- id: str
- page_token: str
- HasField(field_name: Literal['_page_token', b'_page_token', 'page_token', b'page_token']) bool
Checks if a certain field is set for the message.
For a oneof group, checks if any field inside is set. Note that if the field_name is not defined in the message descriptor,
ValueError
will be raised.- Parameters:
field_name (str) – The name of the field to check for presence.
- Returns:
Whether a value has been set for the named field.
- Return type:
bool
- Raises:
ValueError – if the field_name is not a member of this message.
- WhichOneof(oneof_group: Literal['_page_token', b'_page_token']) Literal['page_token'] | None
Returns the name of the field that is set inside a oneof group.
If no field is set, returns None.
- Parameters:
oneof_group (str) – the name of the oneof group to check.
- Returns:
The name of the group that is set, or None.
- Return type:
str or None
- Raises:
ValueError – no group with the given name exists
- class viam.proto.app.mltraining.GetTrainingJobLogsResponse(*, logs: collections.abc.Iterable[global___TrainingJobLogEntry] | None = ..., next_page_token: str = ...)
Bases:
google.protobuf.message.Message
Abstract base class for protocol messages.
Protocol message classes are almost always generated by the protocol compiler. These generated types subclass Message and implement the methods shown below.
- next_page_token: str
- property logs: google.protobuf.internal.containers.RepeatedCompositeFieldContainer[global___TrainingJobLogEntry]
- class viam.proto.app.mltraining.GetTrainingJobRequest(*, id: str = ...)
Bases:
google.protobuf.message.Message
Abstract base class for protocol messages.
Protocol message classes are almost always generated by the protocol compiler. These generated types subclass Message and implement the methods shown below.
- id: str
- class viam.proto.app.mltraining.GetTrainingJobResponse(*, metadata: global___TrainingJobMetadata | None = ...)
Bases:
google.protobuf.message.Message
Abstract base class for protocol messages.
Protocol message classes are almost always generated by the protocol compiler. These generated types subclass Message and implement the methods shown below.
- property metadata: global___TrainingJobMetadata
- HasField(field_name: Literal['metadata', b'metadata']) bool
Checks if a certain field is set for the message.
For a oneof group, checks if any field inside is set. Note that if the field_name is not defined in the message descriptor,
ValueError
will be raised.- Parameters:
field_name (str) – The name of the field to check for presence.
- Returns:
Whether a value has been set for the named field.
- Return type:
bool
- Raises:
ValueError – if the field_name is not a member of this message.
- class viam.proto.app.mltraining.ListTrainingJobsRequest(*, organization_id: str = ..., status: global___TrainingStatus = ...)
Bases:
google.protobuf.message.Message
Abstract base class for protocol messages.
Protocol message classes are almost always generated by the protocol compiler. These generated types subclass Message and implement the methods shown below.
- organization_id: str
- status: global___TrainingStatus
- class viam.proto.app.mltraining.ListTrainingJobsResponse(*, jobs: collections.abc.Iterable[global___TrainingJobMetadata] | None = ...)
Bases:
google.protobuf.message.Message
Abstract base class for protocol messages.
Protocol message classes are almost always generated by the protocol compiler. These generated types subclass Message and implement the methods shown below.
- property jobs: google.protobuf.internal.containers.RepeatedCompositeFieldContainer[global___TrainingJobMetadata]
- class viam.proto.app.mltraining.ModelFramework
Bases:
_ModelFramework
- class viam.proto.app.mltraining.ModelType
Bases:
_ModelType
- class viam.proto.app.mltraining.SubmitCustomTrainingJobRequest(*, dataset_id: str = ..., registry_item_id: str = ..., registry_item_version: str = ..., organization_id: str = ..., model_name: str = ..., model_version: str = ..., arguments: collections.abc.Mapping[str, str] | None = ...)
Bases:
google.protobuf.message.Message
Abstract base class for protocol messages.
Protocol message classes are almost always generated by the protocol compiler. These generated types subclass Message and implement the methods shown below.
- class ArgumentsEntry(*, key: str = ..., value: str = ...)
Bases:
google.protobuf.message.Message
Abstract base class for protocol messages.
Protocol message classes are almost always generated by the protocol compiler. These generated types subclass Message and implement the methods shown below.
- key: str
- value: str
- dataset_id: str
- registry_item_id: str
- registry_item_version: str
- organization_id: str
- model_name: str
- model_version: str
- property arguments: google.protobuf.internal.containers.ScalarMap[str, str]
- class viam.proto.app.mltraining.SubmitCustomTrainingJobResponse(*, id: str = ...)
Bases:
google.protobuf.message.Message
Abstract base class for protocol messages.
Protocol message classes are almost always generated by the protocol compiler. These generated types subclass Message and implement the methods shown below.
- id: str
- class viam.proto.app.mltraining.SubmitTrainingJobRequest(*, dataset_id: str = ..., organization_id: str = ..., model_name: str = ..., model_version: str = ..., model_type: global___ModelType = ..., tags: collections.abc.Iterable[str] | None = ...)
Bases:
google.protobuf.message.Message
Abstract base class for protocol messages.
Protocol message classes are almost always generated by the protocol compiler. These generated types subclass Message and implement the methods shown below.
- dataset_id: str
- organization_id: str
- model_name: str
- model_version: str
- model_type: global___ModelType
- property tags: google.protobuf.internal.containers.RepeatedScalarFieldContainer[str]
- class viam.proto.app.mltraining.SubmitTrainingJobResponse(*, id: str = ...)
Bases:
google.protobuf.message.Message
Abstract base class for protocol messages.
Protocol message classes are almost always generated by the protocol compiler. These generated types subclass Message and implement the methods shown below.
- id: str
- class viam.proto.app.mltraining.TrainingJobLogEntry(*, level: str = ..., time: google.protobuf.timestamp_pb2.Timestamp | None = ..., message: str = ...)
Bases:
google.protobuf.message.Message
Abstract base class for protocol messages.
Protocol message classes are almost always generated by the protocol compiler. These generated types subclass Message and implement the methods shown below.
- level: str
- message: str
- property time: google.protobuf.timestamp_pb2.Timestamp
- HasField(field_name: Literal['time', b'time']) bool
Checks if a certain field is set for the message.
For a oneof group, checks if any field inside is set. Note that if the field_name is not defined in the message descriptor,
ValueError
will be raised.- Parameters:
field_name (str) – The name of the field to check for presence.
- Returns:
Whether a value has been set for the named field.
- Return type:
bool
- Raises:
ValueError – if the field_name is not a member of this message.
- class viam.proto.app.mltraining.TrainingJobMetadata(*, id: str = ..., dataset_id: str = ..., organization_id: str = ..., model_name: str = ..., model_version: str = ..., model_type: global___ModelType = ..., model_framework: global___ModelFramework = ..., is_custom_job: bool = ..., registry_item_id: str = ..., registry_item_version: str = ..., status: global___TrainingStatus = ..., error_status: google.rpc.status_pb2.Status | None = ..., created_on: google.protobuf.timestamp_pb2.Timestamp | None = ..., last_modified: google.protobuf.timestamp_pb2.Timestamp | None = ..., training_started: google.protobuf.timestamp_pb2.Timestamp | None = ..., training_ended: google.protobuf.timestamp_pb2.Timestamp | None = ..., synced_model_id: str = ..., tags: collections.abc.Iterable[str] | None = ...)
Bases:
google.protobuf.message.Message
Abstract base class for protocol messages.
Protocol message classes are almost always generated by the protocol compiler. These generated types subclass Message and implement the methods shown below.
- id: str
- dataset_id: str
- organization_id: str
- model_name: str
- model_version: str
- model_type: global___ModelType
- model_framework: global___ModelFramework
- is_custom_job: bool
- registry_item_id: str
- registry_item_version: str
- status: global___TrainingStatus
- synced_model_id: str
- property error_status: google.rpc.status_pb2.Status
- property created_on: google.protobuf.timestamp_pb2.Timestamp
- property last_modified: google.protobuf.timestamp_pb2.Timestamp
- property training_started: google.protobuf.timestamp_pb2.Timestamp
- property training_ended: google.protobuf.timestamp_pb2.Timestamp
- property tags: google.protobuf.internal.containers.RepeatedScalarFieldContainer[str]
- HasField(field_name: Literal['created_on', b'created_on', 'error_status', b'error_status', 'last_modified', b'last_modified', 'training_ended', b'training_ended', 'training_started', b'training_started']) bool
Checks if a certain field is set for the message.
For a oneof group, checks if any field inside is set. Note that if the field_name is not defined in the message descriptor,
ValueError
will be raised.- Parameters:
field_name (str) – The name of the field to check for presence.
- Returns:
Whether a value has been set for the named field.
- Return type:
bool
- Raises:
ValueError – if the field_name is not a member of this message.
- class viam.proto.app.mltraining.TrainingStatus
Bases:
_TrainingStatus